The total is 50 pt. Q-n 59 is 10 pt and $2 / 2 / 3 / 3$
a. $\quad E(X)=\frac{1}{\lambda}=1$.
b. $\quad \sigma=\frac{1}{\lambda}=1$.
c. $\quad P(X \leq 4)=1-e^{-(1)(4)}=1-e^{-4}=.982$.
d. $\quad P(2 \leq X \leq 5)=\left(1-e^{-(1)(5)}\right)-\left(1-e^{-(1) 22)}\right)=e^{-2}-e^{-5}=.129$.

Q-n 61 is 10 pt and $5 / 5$. In part a), split questions as $1 / 2 / 2$. In part b), split questions as $2 / 3$ Note that a mean value of 2.725 for the exponential distribution implies $\lambda=\frac{1}{2.725}$. Let X denote the duration of a rainfall event.
a. $\quad P(X \geq 2)=1-P(X<2)=1-P(X \leq 2)=1-F(2 ; \lambda)=1-\left[1-e^{-(12.725)(2)}\right]=e^{-222.725}=.4800$;

$$
\begin{aligned}
& P(X \leq 3)=F(3 ; \lambda)=1-e^{-(1 / 2.725)(3)}=.6674 ; \\
& P(2 \leqslant X \leqslant 3)=F(3)-F(2)=0.6674-0.5200=0.1474
\end{aligned}
$$

b. For this exponential distribution, $\sigma=\mu=2.725$, so $P(X>\mu+2 \sigma)=$
$P(X>2.725+2(2.725))=P(X>8.175)=1-F(8.175 ; \lambda)=e^{-(112.725)(8.175)}=e^{-3}=.0498$.
On the other hand, $P(X<\mu-\sigma)=P(X<2.725-2.725)=P(X<0)=0$, since an exponential random variable is non-negative.

Q-n 37 is 10 pt and $5 / 5$. Split part a) as 2 (sampling distribution of $X _b a r$)/2(for $E(X \backslash$ bar)/1 (for the correct comparison). Use the sample split in pa
37. The joint pmf of X_{1} and X_{2} is presented below. Each joint probability is calculated using the independence of X_{1} and X_{2}; e.g., $p(25,25)=P\left(X_{1}=25\right) \cdot P\left(X_{2}=25\right)=(.2)(.2)=.04$.

a. For each coordinate in the table above, calculate \bar{x}. The six possible resulting \bar{x} values and their corresponding probabilities appear in the accompanying pmf table.

\bar{x}	25	32.5	40	45	52.5	65
$p(\bar{x})$.04	.20	.25	.12	.30	.09

From the table, $E(\bar{X})=(25)(.04)+32.5(.20)+\ldots+65(.09)=44.5$. From the original pmf, $\mu=25(.2)+$ $40(.5)+65(.3)=44.5$. So, $E(\bar{X})=\mu$.
b. For each coordinate in the joint pmf table above, calculate $s^{2}=\frac{1}{2-1} \sum_{i=1}^{2}\left(x_{i}-\bar{x}\right)^{2}$. The four possible resulting s^{2} values and their corresponding probabilities appear in the accompanying pmf table.

s^{2}	0	112.5	312.5	800
$p\left(s^{2}\right)$.38	.20	.30	.12

From the table, $E\left(S^{2}\right)=0(.38)+\ldots+800(.12)=212.25$. From the original pmf, $\sigma^{2}=(25-44.5)^{2}(.2)+(40-44.5)^{2}(.5)+(65-44.5)^{2}(.3)=212.25$. So, $E\left(S^{2}\right)=\sigma^{2}$.

Q-n 46 is $3 / 3 / 4$. In part a), split as $1 / 2$ for two questions there. The same should be done for part b.
In part c), take off 1 pt if there is no explanation.
46. $\mu=70 \mathrm{GPa}, \sigma=1.6 \mathrm{GPa}$
a. The sampling distribution of \bar{X} is centered at $E(\bar{X})=\mu=70 \mathrm{GPa}$, and the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}}=\frac{\sigma_{\bar{X}}}{\sqrt{n}}=\frac{1.6}{\sqrt{16}}=0.4 \mathrm{GPa}$.
b. With $n=64$, the sampling distribution of \bar{X} is still centered at $E(\bar{X})=\mu=70 \mathrm{GPa}$, but the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}}=\frac{\sigma_{\bar{X}}}{\sqrt{n}}=\frac{1.6}{\sqrt{64}}=0.2 \mathrm{GPa}$.
c. \bar{X} is more likely to be within 1 GPa of the mean $(70 \mathrm{GPa})$ with the second, larger, sample. This is due to the decreased variability of \bar{X} that comes with a larger sample size.

Q-n 47 is 10 pt and $5 / 5$

47.

a. In the previous exercise, we found $E(\bar{X})=70$ and $S D(\bar{X})=0.4$ when $n=16$. If the diameter distribution is normal, then \bar{X} is also normal, so
$P(69 \leq \bar{X} \leq 71)=P\left(\frac{69-70}{0.4} \leq Z \leq \frac{71-70}{0.4}\right)=P(-2.5 \leq Z \leq 2.5)=\Phi(2.5)-\Phi(-2.5)=.9938-.0062=$.9876.
b. With $n=25, E(\bar{X})=70$ but $S D(\bar{X})=\frac{1.6}{\sqrt{25}}=0.32 \mathrm{GPa}$. So, $P(\bar{X}>71)=P\left(Z>\frac{71-70}{0.32}\right)=$ $1-\Phi(3.125)=1-.9991=.0009$.

