The total is 50 pt. Q-n 59 is 10 pt and 2/2/3/3

a.
$$E(X) = \frac{1}{\lambda} = 1$$
.

b.
$$\sigma = \frac{1}{\lambda} = 1$$
.

c.
$$P(X \le 4) = 1 - e^{-(1)(4)} = 1 - e^{-4} = .982$$
.

d.
$$P(2 \le X \le 5) = (1 - e^{-(1)(5)}) - (1 - e^{-(1)(2)}) = e^{-2} - e^{-5} = .129$$
.

Q-n 61 is 10 pt and 5/5. In part a), split questions as 1/2/2. In part b), split questions as 2/3

Note that a mean value of 2.725 for the exponential distribution implies $\lambda = \frac{1}{2.725}$. Let X denote the duration of a rainfall event.

a.
$$P(X \ge 2) = 1 - P(X \le 2) = 1 - P(X \le 2) = 1 - F(2; \lambda) = 1 - [1 - e^{-(1/2.725)(2)}] = e^{-2/2.725} = .4800;$$

 $P(X \le 3) = F(3; \lambda) = 1 - e^{-(1/2.725)(3)} = .6674;$
 $P(2 \le X \le 3) = F(3) - F(2) = 0.6674 - 0.5200 = 0.1474$

b. For this exponential distribution,
$$\sigma = \mu = 2.725$$
, so $P(X > \mu + 2\sigma) = P(X > 2.725 + 2(2.725)) = $P(X > 8.175) = 1 - F(8.175; \lambda) = e^{-(1/2.725)(8.175)} = e^{-3} = .0498$. On the other hand, $P(X < \mu - \sigma) = P(X < 2.725 - 2.725) = P(X < 0) = 0$, since an exponential random variable is non-negative.$

Q-n 37 is 10 pt and 5/5. Split part a) as 2 (sampling distribution of X_bar)/2(for E(X bar)/1 (for the correct comparison). Use the sample split in pa

37. The joint pmf of X_1 and X_2 is presented below. Each joint probability is calculated using the independence of X_1 and X_2 ; e.g., $p(25, 25) = P(X_1 = 25) \cdot P(X_2 = 25) = (.2)(.2) = .04$.

a. For each coordinate in the table above, calculate \overline{x} . The six possible resulting \overline{x} values and their corresponding probabilities appear in the accompanying pmf table.

$$\overline{x}$$
 25 32.5 40 45 52.5 65 $p(\overline{x})$.04 .20 .25 .12 .30 .09

From the table, $E(\overline{X}) = (25)(.04) + 32.5(.20) + ... + 65(.09) = 44.5$. From the original pmf, $\mu = 25(.2) + 40(.5) + 65(.3) = 44.5$. So, $E(\overline{X}) = \mu$.

b. For each coordinate in the joint pmf table above, calculate $s^2 = \frac{1}{2-1} \sum_{i=1}^{2} (x_i - \overline{x})^2$. The four possible resulting s^2 values and their corresponding probabilities appear in the accompanying pmf table.

From the table,
$$E(S^2) = 0(.38) + ... + 800(.12) = 212.25$$
. From the original pmf, $\sigma^2 = (25 - 44.5)^2(.2) + (40 - 44.5)^2(.5) + (65 - 44.5)^2(.3) = 212.25$. So, $E(S^2) = \sigma^2$.

Q-n 46 is 3/3/4. In part a), split as 1/2 for two questions there. The same should be done for part b.

In part c), take off 1 pt if there is no explanation.

- **46.** $\mu = 70 \text{ GPa}, \sigma = 1.6 \text{ GPa}$
 - **a.** The sampling distribution of \overline{X} is centered at $E(\overline{X}) = \mu = 70$ GPa, and the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{16}} = \frac{1.6}{\sqrt{16}} = 0.4$ GPa.
 - **b.** With n = 64, the sampling distribution of \overline{X} is still centered at $E(\overline{X}) = \mu = 70$ GPa, but the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{n}} = \frac{1.6}{\sqrt{64}} = 0.2$ GPa.
 - c. \overline{X} is more likely to be within 1 GPa of the mean (70 GPa) with the second, larger, sample. This is due to the decreased variability of \overline{X} that comes with a larger sample size.

Q-n 47 is 10 pt and 5/5

47.

- **a.** In the previous exercise, we found $E(\overline{X}) = 70$ and $SD(\overline{X}) = 0.4$ when n = 16. If the diameter distribution is normal, then \overline{X} is also normal, so $P(69 \le \overline{X} \le 71) = P\left(\frac{69 70}{0.4} \le Z \le \frac{71 70}{0.4}\right) = P(-2.5 \le Z \le 2.5) = \Phi(2.5) \Phi(-2.5) = .9938 .0062 = 0.0062$
- **b.** With n = 25, $E(\overline{X}) = 70$ but $SD(\overline{X}) = \frac{1.6}{\sqrt{25}} = 0.32$ GPa. So, $P(\overline{X} > 71) = P\left(Z > \frac{71 70}{0.32}\right) = 1 \Phi(3.125) = 1 .9991 = .0009$.